"Bit Mash Techniques" Code Answer's

You're definitely familiar with the best coding language Whatever that developers use to develop their projects and they get all their queries like "Bit Mash Techniques" answered properly. Developers are finding an appropriate answer about Bit Mash Techniques related to the Whatever coding language. By visiting this online portal developers get answers concerning Whatever codes question like Bit Mash Techniques. Enter your desired code related query in the search bar and get every piece of information about Whatever code related question on Bit Mash Techniques. 

Bit Mash Techniques

By Bright BatfishBright Batfish on May 25, 2021
1. REPRESENTATION: A 32 (or 64)-bit signed integer for up to 32 (or 64) items. ( To avoid issues with the 
    two’s complement representation, use a 32-bit/64-bit signed integer to represent bitmasks of up to
    30/62 items only, respectively ).

    For example:                          5| 4  | 3 | 2 | 1 | 0   <- 0-based indexing from right
                                         32| 16 | 8 | 4 | 2 | 1   <- power of 2
                     A= 34 (base 10) =   1 | 0  | 0 | 0 | 1 | 0   <- in binary
                                         F | E  | D | C | B | A   <- alternative alphabet label
   In the example above,the integer A = 34 or 100010 in binary also represents a small set {1, 5} with a
   0-based indexing scheme in increasing digit significance ( or {B, F} using the alternative alphabet
   label )because the second and the sixth bits (counting from the right) of A are on ( 1 ).

 2. To multiply/divide an integer by 2: 
                                    We only need to shift the bits in the integer left/right, respectively.
    Notice that the truncation in the shift right operation automatically rounds the division-by-2 down,
    e.g. 17/2  = 8.

    For example:         A = 34 (base 10)                  = 100010 (base 2)
                         A = A << 1 = A * 2 = 68 (base 10) = 1000100 (base 2)
                         A = A >> 2 = A / 4 = 17 (base 10) = 10001 (base 2)
                         A = A >> 1 = A / 2 = 8 (base 10) = 1000 (base 2) <- LSB( Least Significant Bit )is gone

 3. Add the jth object to the subset (set the jth bit from 0 to 1):
     use the bitwise OR operation A |= (1 << j).

     For example:     A = 34 (base 10) = 100010 (base 2)
                      j = 3, 1 << j    = 001000 <- bit ‘1’ is shifted to the left 3 times
                                        -------- OR (true if either of the bits is true)
                      A = 42 (base 10) = 101010 (base 2) // update A to this new value 42

4. Remove the jth object from the subset (set the jth bit from 1 to 0):
     use the bitwise AND operation A &= ∼(1 << j).

     For example:         A = 42 (base 10) = 101010 (base 2)
                          j = 1, ~(1 << j) = 111101 <- ‘~’ is the bitwise NOT operation
                                             -------- AND
                          A = 40 (base 10) = 101000 (base 2) // update A to this new value 40

5. Check whether the jth object is in the subset (check whether jth bit is 1):
   use the bitwise AND operation T = A & (1 << j).
   If T = 0, then the j-th item of the set is off.
   If T != 0 (to be precise, T = (1 << j)), then the j-th item of the set is on.

   For example:    A = 42 (base 10) = 101010 (base 2)
                   j = 3, 1 << j    = 001000 <- bit ‘1’ is shifted to the left 3 times
                                     -------- AND (only true if both bits are true)
                   T = 8 (base 10)  = 001000 (base 2) -> not zero, the 3rd item is on

6. To toggle (flip the status of) the j-th item of the set:
   use the bitwise XOR operation A ∧ = (1 << j).

   For example:       A = 40 (base 10) = 101000 (base 2)
                      j = 2, (1 << j)  = 000100 <- bit ‘1’ is shifted to the left 2 times
                                        -------- XOR <- true if both bits are different
                      A = 44 (base 10) = 101100 (base 2) // update A to this new value 44

7. To get the value of the least significant bit that is on (first from the right):
   use T = (A & (-A)).

   For example:     A =  40 (base 10) = 000...000101000 (32 bits, base 2)
                   -A = -40 (base 10) = 111...111011000 (two’s complement)
                                       ----------------- AND
                    T =   8 (base 10) = 000...000001000 (3rd bit from right is on)

8. To turn on all bits in a set of size n: (be careful with overflows)
   use A = (1 << n) - 1 ;

9. Iterate through all subsets of a set of size n:
           `for ( x = 0; x < (1 << n); ++x )`  

10. Iterate through all subsets of a subset y (not including empty set):
           `for ( x = y; x > 0; x = ( y & (x-1) ) )`

Source: codeforces.com

Add Comment

0

All those coders who are working on the Whatever based application and are stuck on Bit Mash Techniques can get a collection of related answers to their query. Programmers need to enter their query on Bit Mash Techniques related to Whatever code and they'll get their ambiguities clear immediately. On our webpage, there are tutorials about Bit Mash Techniques for the programmers working on Whatever code while coding their module. Coders are also allowed to rectify already present answers of Bit Mash Techniques while working on the Whatever language code. Developers can add up suggestions if they deem fit any other answer relating to "Bit Mash Techniques". Visit this developer's friendly online web community, CodeProZone, and get your queries like Bit Mash Techniques resolved professionally and stay updated to the latest Whatever updates. 

Whatever answers related to "Bit Mash Techniques"

View All Whatever queries

Whatever queries related to "Bit Mash Techniques"

Browse Other Code Languages

CodeProZone